3.8 \(\int \frac{(a+b x) \sin (c+d x)}{x^4} \, dx\)

Optimal. Leaf size=132 \[ -\frac{1}{6} a d^3 \cos (c) \text{CosIntegral}(d x)+\frac{1}{6} a d^3 \sin (c) \text{Si}(d x)+\frac{a d^2 \sin (c+d x)}{6 x}-\frac{a \sin (c+d x)}{3 x^3}-\frac{a d \cos (c+d x)}{6 x^2}-\frac{1}{2} b d^2 \sin (c) \text{CosIntegral}(d x)-\frac{1}{2} b d^2 \cos (c) \text{Si}(d x)-\frac{b \sin (c+d x)}{2 x^2}-\frac{b d \cos (c+d x)}{2 x} \]

[Out]

-(a*d*Cos[c + d*x])/(6*x^2) - (b*d*Cos[c + d*x])/(2*x) - (a*d^3*Cos[c]*CosIntegral[d*x])/6 - (b*d^2*CosIntegra
l[d*x]*Sin[c])/2 - (a*Sin[c + d*x])/(3*x^3) - (b*Sin[c + d*x])/(2*x^2) + (a*d^2*Sin[c + d*x])/(6*x) - (b*d^2*C
os[c]*SinIntegral[d*x])/2 + (a*d^3*Sin[c]*SinIntegral[d*x])/6

________________________________________________________________________________________

Rubi [A]  time = 0.324551, antiderivative size = 132, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 5, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {6742, 3297, 3303, 3299, 3302} \[ -\frac{1}{6} a d^3 \cos (c) \text{CosIntegral}(d x)+\frac{1}{6} a d^3 \sin (c) \text{Si}(d x)+\frac{a d^2 \sin (c+d x)}{6 x}-\frac{a \sin (c+d x)}{3 x^3}-\frac{a d \cos (c+d x)}{6 x^2}-\frac{1}{2} b d^2 \sin (c) \text{CosIntegral}(d x)-\frac{1}{2} b d^2 \cos (c) \text{Si}(d x)-\frac{b \sin (c+d x)}{2 x^2}-\frac{b d \cos (c+d x)}{2 x} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x)*Sin[c + d*x])/x^4,x]

[Out]

-(a*d*Cos[c + d*x])/(6*x^2) - (b*d*Cos[c + d*x])/(2*x) - (a*d^3*Cos[c]*CosIntegral[d*x])/6 - (b*d^2*CosIntegra
l[d*x]*Sin[c])/2 - (a*Sin[c + d*x])/(3*x^3) - (b*Sin[c + d*x])/(2*x^2) + (a*d^2*Sin[c + d*x])/(6*x) - (b*d^2*C
os[c]*SinIntegral[d*x])/2 + (a*d^3*Sin[c]*SinIntegral[d*x])/6

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rubi steps

\begin{align*} \int \frac{(a+b x) \sin (c+d x)}{x^4} \, dx &=\int \left (\frac{a \sin (c+d x)}{x^4}+\frac{b \sin (c+d x)}{x^3}\right ) \, dx\\ &=a \int \frac{\sin (c+d x)}{x^4} \, dx+b \int \frac{\sin (c+d x)}{x^3} \, dx\\ &=-\frac{a \sin (c+d x)}{3 x^3}-\frac{b \sin (c+d x)}{2 x^2}+\frac{1}{3} (a d) \int \frac{\cos (c+d x)}{x^3} \, dx+\frac{1}{2} (b d) \int \frac{\cos (c+d x)}{x^2} \, dx\\ &=-\frac{a d \cos (c+d x)}{6 x^2}-\frac{b d \cos (c+d x)}{2 x}-\frac{a \sin (c+d x)}{3 x^3}-\frac{b \sin (c+d x)}{2 x^2}-\frac{1}{6} \left (a d^2\right ) \int \frac{\sin (c+d x)}{x^2} \, dx-\frac{1}{2} \left (b d^2\right ) \int \frac{\sin (c+d x)}{x} \, dx\\ &=-\frac{a d \cos (c+d x)}{6 x^2}-\frac{b d \cos (c+d x)}{2 x}-\frac{a \sin (c+d x)}{3 x^3}-\frac{b \sin (c+d x)}{2 x^2}+\frac{a d^2 \sin (c+d x)}{6 x}-\frac{1}{6} \left (a d^3\right ) \int \frac{\cos (c+d x)}{x} \, dx-\frac{1}{2} \left (b d^2 \cos (c)\right ) \int \frac{\sin (d x)}{x} \, dx-\frac{1}{2} \left (b d^2 \sin (c)\right ) \int \frac{\cos (d x)}{x} \, dx\\ &=-\frac{a d \cos (c+d x)}{6 x^2}-\frac{b d \cos (c+d x)}{2 x}-\frac{1}{2} b d^2 \text{Ci}(d x) \sin (c)-\frac{a \sin (c+d x)}{3 x^3}-\frac{b \sin (c+d x)}{2 x^2}+\frac{a d^2 \sin (c+d x)}{6 x}-\frac{1}{2} b d^2 \cos (c) \text{Si}(d x)-\frac{1}{6} \left (a d^3 \cos (c)\right ) \int \frac{\cos (d x)}{x} \, dx+\frac{1}{6} \left (a d^3 \sin (c)\right ) \int \frac{\sin (d x)}{x} \, dx\\ &=-\frac{a d \cos (c+d x)}{6 x^2}-\frac{b d \cos (c+d x)}{2 x}-\frac{1}{6} a d^3 \cos (c) \text{Ci}(d x)-\frac{1}{2} b d^2 \text{Ci}(d x) \sin (c)-\frac{a \sin (c+d x)}{3 x^3}-\frac{b \sin (c+d x)}{2 x^2}+\frac{a d^2 \sin (c+d x)}{6 x}-\frac{1}{2} b d^2 \cos (c) \text{Si}(d x)+\frac{1}{6} a d^3 \sin (c) \text{Si}(d x)\\ \end{align*}

Mathematica [A]  time = 0.338596, size = 110, normalized size = 0.83 \[ -\frac{d^2 x^3 \text{CosIntegral}(d x) (a d \cos (c)+3 b \sin (c))+d^2 x^3 \text{Si}(d x) (3 b \cos (c)-a d \sin (c))-a d^2 x^2 \sin (c+d x)+2 a \sin (c+d x)+a d x \cos (c+d x)+3 b d x^2 \cos (c+d x)+3 b x \sin (c+d x)}{6 x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)*Sin[c + d*x])/x^4,x]

[Out]

-(a*d*x*Cos[c + d*x] + 3*b*d*x^2*Cos[c + d*x] + d^2*x^3*CosIntegral[d*x]*(a*d*Cos[c] + 3*b*Sin[c]) + 2*a*Sin[c
 + d*x] + 3*b*x*Sin[c + d*x] - a*d^2*x^2*Sin[c + d*x] + d^2*x^3*(3*b*Cos[c] - a*d*Sin[c])*SinIntegral[d*x])/(6
*x^3)

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 117, normalized size = 0.9 \begin{align*}{d}^{3} \left ({\frac{b}{d} \left ( -{\frac{\sin \left ( dx+c \right ) }{2\,{d}^{2}{x}^{2}}}-{\frac{\cos \left ( dx+c \right ) }{2\,dx}}-{\frac{{\it Si} \left ( dx \right ) \cos \left ( c \right ) }{2}}-{\frac{{\it Ci} \left ( dx \right ) \sin \left ( c \right ) }{2}} \right ) }+a \left ( -{\frac{\sin \left ( dx+c \right ) }{3\,{d}^{3}{x}^{3}}}-{\frac{\cos \left ( dx+c \right ) }{6\,{d}^{2}{x}^{2}}}+{\frac{\sin \left ( dx+c \right ) }{6\,dx}}+{\frac{{\it Si} \left ( dx \right ) \sin \left ( c \right ) }{6}}-{\frac{{\it Ci} \left ( dx \right ) \cos \left ( c \right ) }{6}} \right ) \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*sin(d*x+c)/x^4,x)

[Out]

d^3*(b/d*(-1/2*sin(d*x+c)/x^2/d^2-1/2*cos(d*x+c)/x/d-1/2*Si(d*x)*cos(c)-1/2*Ci(d*x)*sin(c))+a*(-1/3*sin(d*x+c)
/x^3/d^3-1/6*cos(d*x+c)/x^2/d^2+1/6*sin(d*x+c)/x/d+1/6*Si(d*x)*sin(c)-1/6*Ci(d*x)*cos(c)))

________________________________________________________________________________________

Maxima [C]  time = 2.09614, size = 149, normalized size = 1.13 \begin{align*} -\frac{{\left ({\left (a{\left (\Gamma \left (-3, i \, d x\right ) + \Gamma \left (-3, -i \, d x\right )\right )} \cos \left (c\right ) + a{\left (-i \, \Gamma \left (-3, i \, d x\right ) + i \, \Gamma \left (-3, -i \, d x\right )\right )} \sin \left (c\right )\right )} d^{4} +{\left (b{\left (3 i \, \Gamma \left (-3, i \, d x\right ) - 3 i \, \Gamma \left (-3, -i \, d x\right )\right )} \cos \left (c\right ) + 3 \, b{\left (\Gamma \left (-3, i \, d x\right ) + \Gamma \left (-3, -i \, d x\right )\right )} \sin \left (c\right )\right )} d^{3}\right )} x^{3} + 2 \, b \cos \left (d x + c\right )}{2 \, d x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*sin(d*x+c)/x^4,x, algorithm="maxima")

[Out]

-1/2*(((a*(gamma(-3, I*d*x) + gamma(-3, -I*d*x))*cos(c) + a*(-I*gamma(-3, I*d*x) + I*gamma(-3, -I*d*x))*sin(c)
)*d^4 + (b*(3*I*gamma(-3, I*d*x) - 3*I*gamma(-3, -I*d*x))*cos(c) + 3*b*(gamma(-3, I*d*x) + gamma(-3, -I*d*x))*
sin(c))*d^3)*x^3 + 2*b*cos(d*x + c))/(d*x^3)

________________________________________________________________________________________

Fricas [A]  time = 1.7507, size = 404, normalized size = 3.06 \begin{align*} -\frac{2 \,{\left (3 \, b d x^{2} + a d x\right )} \cos \left (d x + c\right ) +{\left (a d^{3} x^{3} \operatorname{Ci}\left (d x\right ) + a d^{3} x^{3} \operatorname{Ci}\left (-d x\right ) + 6 \, b d^{2} x^{3} \operatorname{Si}\left (d x\right )\right )} \cos \left (c\right ) - 2 \,{\left (a d^{2} x^{2} - 3 \, b x - 2 \, a\right )} \sin \left (d x + c\right ) -{\left (2 \, a d^{3} x^{3} \operatorname{Si}\left (d x\right ) - 3 \, b d^{2} x^{3} \operatorname{Ci}\left (d x\right ) - 3 \, b d^{2} x^{3} \operatorname{Ci}\left (-d x\right )\right )} \sin \left (c\right )}{12 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*sin(d*x+c)/x^4,x, algorithm="fricas")

[Out]

-1/12*(2*(3*b*d*x^2 + a*d*x)*cos(d*x + c) + (a*d^3*x^3*cos_integral(d*x) + a*d^3*x^3*cos_integral(-d*x) + 6*b*
d^2*x^3*sin_integral(d*x))*cos(c) - 2*(a*d^2*x^2 - 3*b*x - 2*a)*sin(d*x + c) - (2*a*d^3*x^3*sin_integral(d*x)
- 3*b*d^2*x^3*cos_integral(d*x) - 3*b*d^2*x^3*cos_integral(-d*x))*sin(c))/x^3

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x\right ) \sin{\left (c + d x \right )}}{x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*sin(d*x+c)/x**4,x)

[Out]

Integral((a + b*x)*sin(c + d*x)/x**4, x)

________________________________________________________________________________________

Giac [C]  time = 1.14349, size = 1297, normalized size = 9.83 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*sin(d*x+c)/x^4,x, algorithm="giac")

[Out]

1/12*(a*d^3*x^3*real_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 + a*d^3*x^3*real_part(cos_integral(-d
*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 + 2*a*d^3*x^3*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c) - 2*a*d^
3*x^3*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c) + 4*a*d^3*x^3*sin_integral(d*x)*tan(1/2*d*x)^2*t
an(1/2*c) + 3*b*d^2*x^3*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 - 3*b*d^2*x^3*imag_part(cos_i
ntegral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 + 6*b*d^2*x^3*sin_integral(d*x)*tan(1/2*d*x)^2*tan(1/2*c)^2 - a*d^3
*x^3*real_part(cos_integral(d*x))*tan(1/2*d*x)^2 - a*d^3*x^3*real_part(cos_integral(-d*x))*tan(1/2*d*x)^2 - 6*
b*d^2*x^3*real_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c) - 6*b*d^2*x^3*real_part(cos_integral(-d*x))*t
an(1/2*d*x)^2*tan(1/2*c) + a*d^3*x^3*real_part(cos_integral(d*x))*tan(1/2*c)^2 + a*d^3*x^3*real_part(cos_integ
ral(-d*x))*tan(1/2*c)^2 - 3*b*d^2*x^3*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2 + 3*b*d^2*x^3*imag_part(cos_
integral(-d*x))*tan(1/2*d*x)^2 - 6*b*d^2*x^3*sin_integral(d*x)*tan(1/2*d*x)^2 + 2*a*d^3*x^3*imag_part(cos_inte
gral(d*x))*tan(1/2*c) - 2*a*d^3*x^3*imag_part(cos_integral(-d*x))*tan(1/2*c) + 4*a*d^3*x^3*sin_integral(d*x)*t
an(1/2*c) + 3*b*d^2*x^3*imag_part(cos_integral(d*x))*tan(1/2*c)^2 - 3*b*d^2*x^3*imag_part(cos_integral(-d*x))*
tan(1/2*c)^2 + 6*b*d^2*x^3*sin_integral(d*x)*tan(1/2*c)^2 - a*d^3*x^3*real_part(cos_integral(d*x)) - a*d^3*x^3
*real_part(cos_integral(-d*x)) - 6*b*d^2*x^3*real_part(cos_integral(d*x))*tan(1/2*c) - 6*b*d^2*x^3*real_part(c
os_integral(-d*x))*tan(1/2*c) - 4*a*d^2*x^2*tan(1/2*d*x)^2*tan(1/2*c) - 4*a*d^2*x^2*tan(1/2*d*x)*tan(1/2*c)^2
- 6*b*d*x^2*tan(1/2*d*x)^2*tan(1/2*c)^2 - 3*b*d^2*x^3*imag_part(cos_integral(d*x)) + 3*b*d^2*x^3*imag_part(cos
_integral(-d*x)) - 6*b*d^2*x^3*sin_integral(d*x) - 2*a*d*x*tan(1/2*d*x)^2*tan(1/2*c)^2 + 4*a*d^2*x^2*tan(1/2*d
*x) + 6*b*d*x^2*tan(1/2*d*x)^2 + 4*a*d^2*x^2*tan(1/2*c) + 24*b*d*x^2*tan(1/2*d*x)*tan(1/2*c) + 6*b*d*x^2*tan(1
/2*c)^2 + 2*a*d*x*tan(1/2*d*x)^2 + 8*a*d*x*tan(1/2*d*x)*tan(1/2*c) + 12*b*x*tan(1/2*d*x)^2*tan(1/2*c) + 2*a*d*
x*tan(1/2*c)^2 + 12*b*x*tan(1/2*d*x)*tan(1/2*c)^2 - 6*b*d*x^2 + 8*a*tan(1/2*d*x)^2*tan(1/2*c) + 8*a*tan(1/2*d*
x)*tan(1/2*c)^2 - 2*a*d*x - 12*b*x*tan(1/2*d*x) - 12*b*x*tan(1/2*c) - 8*a*tan(1/2*d*x) - 8*a*tan(1/2*c))/(x^3*
tan(1/2*d*x)^2*tan(1/2*c)^2 + x^3*tan(1/2*d*x)^2 + x^3*tan(1/2*c)^2 + x^3)